University of California, Berkeley Physics 110B Spring 2001 Section 1 (Strovink)

Problem Set 6

1. Relativistic transformation of a particle's polar angle. Consider the usual Lorentz frames S and S', with spatial origins coincident at t = t' = 0. As usual, frame S' moves in the \hat{x} or \hat{x}' direction with velocity βc with respect to frame S. A particle is emitted by a radioactive source that is at rest with respect to S'. As seen by an observer in S', the particle travels with velocity $\beta'c$ at an angle θ' with respect to the \hat{x}' direction. However, as seen by an observer who is at rest with respect to the frame S, prove that the particle makes a different angle θ with respect to the \hat{x} direction, where

$$\tan \theta = \frac{\sin \theta'}{\gamma (\cos \theta' + (\beta/\beta'))}.$$

2. and 3. (double credit problem) Violation of time-reversal invariance was discovered in 1964 in the weak decay

$$K_L^0 \to \pi^+\pi^-$$

where the K_L^0 and π^{\pm} are quark-antiquark pairs (including a strange quark in the K_L^0 case); a kaon has $\approx \frac{7}{2}$ of a pion's mass. In its own rest frame, the (spin 0) kaon decays isotropically. Suppose that the kaons compose a finite beam whose momentum per particle is $2m_Kc$ (\approx 1 GeV/c). With respect to the beam direction, find the laboratory angle θ at which the flux of decay pions per unit solid angle, $dN/d\Omega dt$, is infinite. [Hint: the answer is not $\theta = 90^{\circ}$.]

4. Define the contravariant four-vectors

$$\begin{split} A^{\mu} &\equiv \{V/c, \mathbf{A}\} \\ J^{\mu} &\equiv \{c\rho, \mathbf{J}\} \\ p^{\mu} &\equiv \{E/c, \mathbf{p}\} \\ k^{\mu} &\equiv \{\omega/c, \mathbf{k}\} \\ \partial^{\mu} &\equiv \{\partial/c\partial t, -\nabla\} \;. \end{split}$$

Use the convention that repeated Greek indices are summed from 0 to 3. Employing primarily contravariant four-vectors, but making use of

covariant four-vectors where appropriate, write a manifestly Lorentz invariant equation that is equivalent to

- (a) the generalized de Broglie relation.
- (b) conservation of electric charge.
- (c) the Lorentz gauge condition.
- (d) the wave equation, including sources, for the electromagnetic potentials in Lorentz gauge.

5. An object a^{μ} is a (contravariant) four-vector if it transforms (between frames as defined in Problem 1) according to

$$a^{\prime\mu} = \Lambda^{\mu}_{\nu} a^{\nu}$$
,

where Λ is the (symmetric) 4×4 Lorentz transformation matrix. (Conventionally, the superscript labels the row and the subscript labels the column, but this makes no difference for a symmetric matrix.) Covariant four-vectors instead transform according to

$$a'_{\mu} = (\Lambda^{-1})^{\nu}_{\mu} a_{\nu}$$

(otherwise the scalar product $a_{\mu}a^{\mu} = a'_{\mu}a'^{\mu}$ would not remain invariant for different Lorentz frames). Consider now an (arbitrary) four-tensor $H^{\mu\nu}$. In frame \mathcal{S} , $H^{\mu\nu}$ contracts with covariant four-vector a_{ν} to yield contravariant four-vector b^{μ} , according to

$$b^{\mu} = H^{\mu\nu}a_{\mu}$$
.

In the frame S', requiring $H^{\mu\nu}$ to satisfy the transformation properties of a four-tensor, we define $H'^{\mu\nu}$ so that

$$b'^{\mu} = H'^{\mu\nu} a'_{\nu} \ .$$

Prove that

$$H'^{\mu\nu} = \Lambda^\mu_\rho H^{\rho\sigma} \Lambda^\nu_\sigma \; . \label{eq:Hmunu}$$

This defines the Lorentz transformation property of a four-tensor. **6.** Consider the antisymmetric electromagnetic field strength tensor

$$F^{\mu\nu} \equiv \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu} .$$

Prove that $F^{\mu\nu}$ is a four-tensor, *i.e.* it transforms according to the results of Problem 5.

7. Using the definitions of ∂^{μ} and A^{μ} , show by explicit calculation, element by element, that the covariant electromagnetic field strength tensor is equal to

$$F = \begin{pmatrix} 0 & -E^1/c & -E^2/c & -E^3/c \\ E^1/c & 0 & -B^3 & B^2 \\ E^2/c & B^3 & 0 & -B^1 \\ E^3/c & -B^2 & B^1 & 0 \end{pmatrix}.$$

(The sign of this result is opposite to that of Griffiths; this is expected from his use of a metric tensor with sign opposite to the standard.)

8. Prove that the equation

$$\partial_{\mu}F^{\mu\nu} = \mu_0 J^{\nu}$$

is equivalent (in vacuum) to the two Maxwell equations which involve sources. (The two source-free Maxwell equations are already required to be true by the definition of A^{μ} .)